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Abstract. In this paper we carry out quantum Monte Carlo simulations of a quantum particle
in a one-dimensional random potential (plus a fixed harmonic potential) at a finite temperature.
This is the simplest model of an interface in a disordered medium and may also pertain to
an electron in a dirty metal. We compare with previous analytical results, and also derive an
expression for the sample-to-sample fluctuations of the mean square displacement from the origin
which is a measure of the glassiness of the system. This quantity as well as the mean square
displacement of the particle are measured in the simulation. The similarity to the quantum spin
glass in a transverse field is noted. The effect of quantum fluctuations on the glassy behaviour
is discussed.

1. Introduction

The problem of a quantum spin glass in a transverse field was recently at the centre of
theoretical and experimental interest [1–5]. In particular the question of the interplay
between glassy behaviour and quantum fluctuations and the properties of the quantum
transition at zero temperature were the subject of several investigations, both for the case
of the infinite-ranged spin glass and more realistic three-dimensional models.

A simpler model which catches many of the essential features of the (classical) spin
glass problem is that of a directed manifold in a random medium [6–10]. An even higher
simplification occurs for the case of a zero-dimensional manifold, which is equivalent to a
particle in a random potential (which is localized by an additional fixed harmonic potential)
[11–16]. This model has been found to require a (infinite-step) Parisi-type solution when the
random potential has long-range correlations [13]. For a random potential with short-ranged
correlations a one-step replica-symmetry-breaking (RSB) solution has been found [9, 15, 16].
A single particle in one dimension does not have a sharp transition into a glassy phase. But
in infinite dimensions it does. It turns out that the analytical solution which utilizes the
variational approximation, still possess a sharp transition at finite dimensions (including
one dimension). This occurs since the replica symmetric (RS) is not able to capture the
glassy features of the systems once they become strong enough, and gives rise to unphysical
results, such as a non-monotonic mean square displacement of the particle from the origin
as a function of the temperature. Below a certain temperature the RSB solution yields a
much better physical result, and in particular the correct non-analytic behaviour atT = 0
as a function of the strength of the random potential in agreement with an Imry–Ma-type
argument [15]. One should notice though, that the transition which has been found for a
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Figure 1. Schematic phase diagram of a quantum particle in
a random potential plus an harmonic potential, as obtained
from the variational calculation derived in I.

particle in a random potential is of the Almeida–Thouless-type [17, 18] in the sense that
it is associated with a RS–RSB transition but not with an order–disorder (spin-glass-like)
transition.

The success of the variational treatment of a classical particle in a random potential,
led one of us recently [19, 20] to investigate a quantum analogue, i.e. to turn on ¯h and
consider the effect of quantum fluctuations, e.g. tunnelling on the glassy behaviour of the
particle. This was suggested by the recent theoretical treatment of the quantum spin glass
in a transverse field [1, 4].

Analytically we have found a glassy phase characterized by RSB, which is destroyed by
the quantum fluctuations for strong enough ¯h, or alternatively for small enoughm, which is
the particle’s mass. The variable ¯h2/m plays the role of the transverse field in the quantum
spin glass problem. A schematic phase diagram is depicted in figure 1. The full details of
the analytical investigation are given in [20], hereafter referred to as I.

Recently [21] one of us used the model of a particle in two spatial dimensions under the
influence of a harmonic and a quenched random potential to describe the melting transition
of the flux lattice in high-temperature superconductors with columnar disorder. The so-
called cage model was originally introduced by Nelson and Vinokur [22]. In this model a
single flux line is represented by the world line of a quantum particle. The influence of
neighbouring flux lines is taken effectively as the cage harmonic potential. The magnitude of
h̄ is determined by the size of the system along thez-axis and the value of the temperature.
This shows the usefulness of the toy model to other physical systems of interest.

Our aim in this paper is two-fold. First, we carried out a quantum Monte Carlo
simulation of the system in one dimension in order to compare them with the analytical
results obtained in I for the mean square displacement. Secondly, since both the random
potential and the quantum fluctuations increase the mean square displacement, this quantity
by itself is not enough to give a clear picture concerning the strength of the glassy behaviour
of the system. Hence, we have measured in the simulation, and also calculated analytically
the sample-to-sample fluctuation of〈x2〉, which shows that the glassy behaviour of the
system diminishes as the quantum fluctuation increases until the eventual termination of the
glassy phase for strong enough ¯h2/m. This decline in the sample-to-sample fluctuations is a
gradual effect, which analytically culminates in the transition from an RSB solution to a RS
solution. As mentioned previously, in a simulation which is carried out in one dimension,
we do not expect to observe any sharp transitions. The trapping of the particle in deep
local minima of the random potential gives rise to a sticky behaviour—i.e. a freezing of the
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mean square displacement from the origin. This effect is countered by tunnelling among
the different minima which enables the particle to escape from a local minima and thus
diminishes the glassy behaviour.

In the next section we define the model. In section 3 we review some of the results
obtained in I and obtain a new analytic result for the sample-to-sample fluctuations of the
mean square displacement of the particle from the origin. In section 4, we describe the
details of the quantum Monte Carlo (QMC) simulation. Section 5 is devoted to a discussion
of the results and a summary. A comparison is made between the simulation and the
theoretical results obtained in I and in section 3. In the appendix we give some further
details of the calculation presented in section 3.

2. The model

The partition function for a particle at finite temperatureT = 1/kBβ, subject to a harmonic
potential and a random potentialV , is given by the functional integral [23]:

Z(U) =
∫
x(0)=x(U)

[dx] exp

{
− 1

h̄

∫ U

0

[
mẋ(u)2

2
+ µx(u)

2

2
+ V (x(u))

]
du

}
(2.1)

wherex is anN -dimensional vector (N is the number of spatial dimensions), andU = βh̄.
The variableu has dimensions of time and is often referred to as the Trotter dimension.
We observe that the trajectoryx(u) forms a closed path. In this paper we are concerned
with a random quenched potentialV (x), which is Gaussian distributed. This means that the
probability for a given realization of the potential is given by:

P(V (x)) = C exp

(
−
∫

dx dx ′V (x)1(x − x ′)V (x ′)
)

(2.2)

with some known function1(x−x ′). It is thus sufficient to know only the first two moments
of the distribution, namely

〈V (x)〉R = 0 〈V (x)V (x′)〉R = −Nf
(
(x− x′)2

N

)
(2.3)

where the functionsf and 1 are related to each other. The functionf describes the
correlations of the random potential. In this paper we consider two cases. One, which we
call the case of long-ranged correlations of the potential, for whichf is taken to decay as
a power at large distances:

f (y) = g

2(1− γ )(a0+ y)1−γ (2.4)

with γ = 1
2 . This case corresponds, in one dimension, to an interface in the random field

Ising model [6, 9, 14, 15]. The parametera0 plays the role of a short-distance regulator for
f . Another type of random potential we consider has Gaussian correlations and we refer to
it as the case of short-ranged correlations. For this case, the functionf is taken to decay
as an exponential function at large distances:

f (y) = g

2
exp(− 1

2y). (2.5)

In the classical case it has been shown that (forN = 1) even when correlations fall
exponentially fast, the physics is equivalent within the variational approximation to the
case of random potential with power law correlations (equation (2.4)) andγ = 3

2 at large
distances [9, 15]. This fact also holds in the quantum case, as has been demonstrated in
I. Thus, we will compare the results obtained in the QMC for the distribution (2.5) with
results obtained in I for the case ofγ = 3

2.
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3. Theoretical considerations

In paper I we investigated the problem using the replica method and the variational
approximation. Here we review briefly some of the formalism and discuss the new derivation
of the sample-to-sample fluctuation of the mean square displacement that is a measure of the
glassiness of the system and is needed to compare with the results of the QMC simulations.
Some details are deferred to the appendix. Readers who are interested only in the details
of the QMC simulation can skip this section.

In the replica method variational approach the system is represented by ann-body
variational Hamiltonian:

hn = 1

2

∫ U

0
du
∑
a

[mẋ2
a(u)+ µx2

a(u)] −
1

2h̄

∫ U

0
du
∫ U

0
du′

∑
ab

sab(u− u′)xa(u) · xb(u′).

(3.1)

The matrixsab(u − u′) is determined by extremizing the variational free energy which is
given by:

nβ〈F 〉R/N = 〈Hn − hn〉hn/h̄− ln
∫

[dx]e−hn/h̄. (3.2)

HereHn is the exactn-body Hamiltonian. The limitn→ 0 has to be taken at the end.
The propagator associated withhn is given in frequency space

Gab(ω) ≡ ([(mω2+ µ)1− s̃(ω)]−1)ab. (3.3)

ω is the frequency conjugate to the Trotter time variableu, and takes the values:

ωl = 2π

U
l l = 0,±1,±2, . . . (3.4)

and the matrix̃sab(ω) is related tosab(u) by:

sab(ζ ) = 1

β

∞∑
l=−∞

exp(−iωlζ )s̃ab(ωl). (3.5)

We have found a self-consistent solution to the variational equations where only the
diagonal elements of the matrixsab are ‘time’ dependent, and the off-diagonal elements are
independent of the Trotter time. Thus

s̃aa(ω) = s̃d (ω) (3.6)

s̃ab(ω, z)↔ s̃(z)δω,0 a 6= b (3.7)

where the Parisi parameter 0< z < 1 labels the ‘distance’ between replicas indicesab. A
similar behaviour follows for the propagator matrixGab(ω) with a similar notationGd(ω)

andG(z). (These are the same as the quantitiesr̃d (ω) and r̃(z) used in I.)
The mean square displacement from the origin is given by:

〈〈x2〉〉R/N = 1

β

∞∑
k=−∞

Gd(ωk). (3.8)

This quantity was evaluated in I.
The sample-to-sample fluctuation of〈x2〉 is a measure of the glassiness of the system. In

the replica approach together with the variational approximation, this quantity is represented
by

〈〈x2〉2〉R − 〈〈x2〉〉R2 = 〈x2
ax

2
b〉hn − 〈x2

a〉2hn (3.9)
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Figure 2. Plot of sample-to-sample fluctuations of〈〈x2〉〉R for long-ranged correlated disorder
from numerical solution. Broken curves are solutions assuming replica symmetry. Full curves
are RSB solutions. From top to bottom:κ = 100, 1.0, 0.3, 0.2, 0.1.

wherea andb are indices for replicas. Following the notation we used in I, the sample-to-
sample fluctuation of the mean square displacement becomes:

1

N2
(〈〈x2〉2〉R − 〈〈x2〉〉R2

) = 2

Nβ2

∫ 1

0
G2(z) dz. (3.10)

For a particle inN dimensions it is self-averaging in the largeN limit but not for N = 1.
The degree of non-self-averaging is a measure of the glassy behaviour of the system.

In the appendix we give details of the numerical evaluation of the sample-to-sample
fluctuation of〈〈x2〉〉 both in the replica symmetric and in the RSB phases. The calculation
is done both for the case of continuous RSB which occurs for a random potential with
long ranged correlations, and for the case of short-ranged correlated potential where there
is a one-step RSB. The results are depicted in figures 2 and 3, respectively. We observe
that the glassiness of the system increases with decreasing temperature, but decreases with
increasing ¯h2/m ≡ 1/κ. Recall that the transition temperatureTc(κ) between the RS and
RSB phases decrease with decreasingκ as was obtained in I.

Another quantity that could also be used as a measure for the glassiness of the system,
but we did not measure in the QMC simulation, is the sample-to-sample fluctuation of the
susceptibility,

χ = 1

N
(〈x2〉 − 〈x〉2) (3.11)

which is given by:

〈χ2〉R − 〈χ〉2R =
1

3β2

(
1+ 2

N

)[∫ 1

0
dz G2(z)−

(∫ 1

0
dz G(z)

)2]
. (3.12)
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Figure 3. Plot of sample-to-sample fluctuations of〈x2〉 for short-ranged correlated disorder
from the numerical solution. Broken curves are solutions assuming replica symmetry. Full
curves are one-step RSB solutions. From top to bottom:κ =100, 6, 3, 2, 1.

4. Numerical simulations

We applied the path integral Monte Carlo method (PIMC) in one space dimension to
calculate the relevant physical quantities that we are interested in. The partition function of
this system at a given temperature is given by

Z(T ) =
∫ x(U)=x′

x(0)=x
[dx] exp

{
− 1

h̄

∫ U

0

[
mẋ(u)2

2
+ µx(u)

2

2
+ V (x(u))

]
du

}
. (4.1)

We discretizex(τ) intoM+1 points withx(1) equal tox(M+1). The partition function
now becomes anM-dimensional ordinary integral, i.e.

Z(T ) =
∫ M∏

i=1

dxi
A

exp

[
−

M∑
j=1

ε

[
m

2

(
(xj+1− xj )

ε

)2

+ µ
2
x2
j + V (xj )

]]
(4.2)

whereε = U/M, A = √2πh̄ε/m. In this way we are able to apply the Metropolis method
to perform the integration for the partition function.

In this form the partition function of a quantum particle is similar to the classical
Boltzmann distribution of a polymer ring withM beads under the influence of an applied
harmonic potential and a random potential. The beads have a harmonic spring interaction
between neighbouring beads and in addition each bead feels a combination of a harmonic
(with respect to the origin) and a random local potential. This gives us an intuitive picture
of the simulation. In the simulation one attempts to move each bead in its own turn and
one checks if the ‘energy’ (minus the argument of the exponential) decreases or increases.
Then one actually moves the bead in accordance to a detailed balance algorithm, e.g. the
Metropolis algorithm.

The problem of doing PIMC comes from the fact that for smallε (or largeM) the beads
are not easy to move due to a very large spring constant, thus the acceptance rate is low
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for a reasonable size move and convergence is not easy to achieve in a reasonable time.
For this reason many efforts have been made to circumvent the problem [24–27]. We use
the normal mode PIMC to perform the calculation [24]. In our program the motion of the
‘beads’ includes 2 parts, i.e.

(1) Microscopic movement: we attempt to change the value of eachxi individually. We
put x ′i = xi + dx and decide whetherxi should change or not.

(2) Global movement: we consider allxi ’s together as a set, and consider

x ′i = xi + a0+
qc∑
q=1

aq sin

(
2πq

i − 1

M

)
∀i = 1 . . .M. (4.3)

In our simulation the total number of points on the ‘time’ axis are chosen such that
more points are used for the smallκ regime. The numbers range from 7 to 16. Although
this is not a large number, results from simulations we carried out for a simple harmonic
oscillator give rather small errors. This gives us confidence that in the presence of random
potentials the small number of points in the Trotter time dimension will also give us a
small error in comparison with the statistical error which comes from the small number of
samples of random potentials. Since this is not a very large number of points we found it
sufficient to include only the zeroth and first normal modes, i.e. we chooseqc = 1, and then
decide whether they move or not. The magnitude of dx and theai ’s are chosen so that the
acceptance ratio is approximately 0.5. The parametersa0, a1, and the size of microscopic
movement, dx, are listed in table 1 at the end of this section.

We have generated two kinds of random potentials: A random potential with long-range
correlation, characterized byγ = 1

2 and a random potential with short-range correlation
which decay like a Gaussian. Within the framework of the variational approximation
such a potential is equivalent to a random potential with power law correlations that are
characterized by an indexγ = 3

2.
For the case of a long-range correlation, we have generated thatK = 6000 uncorrelated

random numbersh1 . . . hK with a Gaussian distribution. We then constructed the variables
V0 . . . VK by:

Vi = constant

( i∑
j=0

hj −
K∑
j=i

hj

)
(4.4)

and placed them on one-dimensional lattice with a lattice constant chosen to be 0.01. The
random potential generated in this way has correlation

〈ViVj 〉R = −constant|i − j | + C (4.5)

whereC is a constant independent ofi, j . The free energy depends trivially onC but
〈〈x2〉〉R is independent ofC as has been mentioned in equation (2) of [13]. In this way
a random potential with long-range correlation is generated. These 6000 numbers have
long-ranged correlations withγ = 1

2.
We now discuss the procedure to generate a random potential with short range

correlations. From the fact that random potentials with correlation

〈V (x1)V (x2)〉R ∝ exp
(
−a

2
(x1− x2)

2
)

(4.6)

in configuration space have correlations in momentum space with the following form

〈Vk1Vk2〉R ∝ δ(k1+ k2) exp(−k1
2/2a) (4.7)

we generated random numbers with a proper distribution in momentum space and fast
Fourier transformed them by a standard Fortran subroutine [28] to get random numbers
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with a Gaussiancorrelation. We put 4000 of them on lattice sites with a lattice constant
of 0.005. These constitute a random potential with short (Gaussian) correlations. In both
long- and short-ranged disorder, we discretize thex-direction such that the lattice is about
2 orders of magnitude smaller than〈〈x2〉〉R.

Another difficulty is that in the low-temperature regime the relaxation time of the system
is very long because the phase space of the system is separated by high free energy barriers
and it is difficult to get reliable results within a reasonable computer time. The standard
approach of doing a simulation in these systems is the simulated annealing approach, and
in addition to using this method we also used a modified version of the global movement
algorithm to speed up the dynamics.

We started our simulation from the high temperature regime (T = 3Tc(∞) for long-
range correlation case andT = 2Tc(∞) for short-range correlation case). We then lowered
the temperature in steps of 1Tc(∞) when T > Tc(∞). For T < Tc(∞) we lowered
the temperature byδT = 0.1Tc(∞) at a time and performed thermal averages for every
0.2Tc(∞). The lowest temperature of our simulation was set to be 0.2Tc(∞). In addition, we
attempted two different size (zeroth mode) global movements in each sweep, of magnitudes
a0 anda′0 respectively. Generally, we choose one of these parameters, saya0, to be much
bigger than the other (but such the acceptance rate will not fall below 0.01) in order that
the particle will get a chance to occasionally escape from deep wells which correspond to
metastable minima. We have performed the simulation for different given random potentials
with thermalization sweeps in the range of 30 000–200 000 and averaged over 200 000–
2 000 000 MC steps and only a very small difference have been found. When taking data
we have chosen the number of thermalization sweeps to be 50 000 for all cases and averaged
over 200 000–400 000 steps with more steps for lower temperatures.

Table 1 gives an example for the parameters we have chosen for the simulation in the
case of long-ranged correlated potential.

Figure 4. Plot of 〈〈x2〉〉R versusT/Tc(∞) for long-ranged correlated disorder. Full curves
are numerical solutions, obtained in I, assuming replica symmetry. From top to bottom:
κ = 0.1, 0.2, 0.3, 1.0, 100. Data points are Monte Carlo simulations forκ = 100 (circles),
κ = 1.0 (squares),κ = 0.3 (diamonds),κ = 0.2 (up triangles), andκ = 0.1 (down triangles).
Each point is averaged over 2000 samples. Error bars indicate the statistical errors for the cases
of κ = 100 (dotted line) andκ = 0.1 (full line).



Quantum Monte Carlo simulations of a particle 1811

Table 1. Example of different parameters in the QMC for the long-ranged correlated potential.

t dx a0 a′0 a1

κ = 100
3.0 0.02 2.30 2.0 0.03
2.0 0.02 2.00 1.3 0.04
1.0 0.03 1.70 0.4 0.04
0.9 0.03 1.50 0.4 0.04
0.8 0.03 1.20 0.3 0.05
0.7 0.03 1.00 0.2 0.05
0.6 0.04 0.90 0.15 0.06
0.5 0.04 0.90 0.12 0.06
0.4 0.05 0.80 0.10 0.07
0.3 0.05 0.80 0.09 0.07
0.2 0.06 0.70 0.08 0.08

κ = 0.2
3.0 0.30 1.45 1.45 0.80
2.0 0.30 1.05 1.05 0.90
1.0 0.35 1.00 1.00 0.95
0.9 0.37 0.95 0.80 0.85
0.8 0.48 0.90 0.70 0.85
0.7 0.59 0.90 0.60 0.85
0.6 0.60 0.85 0.50 0.80
0.5 0.71 0.85 0.45 0.80
0.4 0.82 0.80 0.40 0.80
0.3 0.82 0.80 0.35 0.66
0.2 0.82 0.70 0.20 0.45

5. Results and discussion

The mean square displacement of the particle as well as the sample-to-sample fluctuations
of the mean square displacement are calculated in our simulation, and all data points are
averaged over 2000 samples of the random potential.

For the classical case, previous numerical results for the long-range case, were reported
by [13] for the long-ranged case and also by [15] for both the short- and long-ranged cases.
They did not perform Monte Carlo simulations, but used the fact that in the classical case
instead of a path integral one has to evaluate a simple integral for each realization of the
random potential. For largeκ(= 100), where the results should reduce to the classical case,
we have checked our results for the mean square displacement against the results of [13, 15],
and the agreement is quite good, taking into account the fact that we have averaged over
2000 realizations of the disordered versus 10 000 in [15] and 40 000 in [13]. In doing a
PIMC we did not have enough computer time to average over a larger number of realizations.

In figure 4 we show the results of the Monte Carlo simulations for the mean square
displacement, for the case of long-ranged correlated potential. For comparison we show the
results obtain from the analytical solution reported in I. As in the classical case we observe
that when quantum effects are turned on, the RS symmetric solution gives an unphysical
result belowTc(κ), down to a certain criticalκ. The RSB solution gives rise to a flat
behaviour of〈〈x2〉〉R below Tc(κ). The actual results of the QMC show that the function
is indeed monotonic, but no sharp transition is observed, and it continues to decrease at all
temperatures. A sharp transition is only expected atN = ∞, whereas the simulation has



1812 Hsuan-Yi Chen and Y Y Goldschmidt

Table 2. Example of〈〈x2〉〉R from two sets of 1000 realizations of the long-ranged correlated
random potential in the QMC.

t 〈〈x2〉〉R , first 1000 samples 〈〈x2〉〉R , second 1000 samples

κ = 1.0
3.0 4.185 4.058
2.0 3.396 3.281
1.0 2.767 2.662
0.8 2.672 2.574
0.6 2.601 2.497
0.4 2.552 2.437
0.2 2.519 2.404

κ = 0.3
3.0 4.237 4.112
2.0 3.465 3.352
1.0 2.857 2.755
0.8 2.774 2.670
0.6 2.701 2.603
0.4 2.654 2.552
0.2 2.610 2.498

κ = 0.2
3.0 4.276 4.148
2.0 3.514 3.402
1.0 2.925 2.824
0.8 2.846 2.745
0.6 2.784 2.683
0.4 2.734 2.636
0.2 2.677 2.577

been carried out atN = 1, whereN is the number of spatial dimensions. The variational
approximation also gives rise to a sharp transition at all dimensions, much like the large
N result. Asκ decreases, tunnelling increases and the glassiness of the system decreases
as the particle is able to tunnel across potential barriers. This is evident in the analytical
solution by the decrease ofTc(κ) with decreasingκ, until there is no longer any transition.

In this simulation we found that the statistical errors are dominated by the sample-to-
sample fluctuations of〈x2〉 (the discussion of this quantity is in the next paragraph). For
this reason, the error bars in figure 4 are given by

±2(〈〈x2〉〈x2〉〉R − 〈〈x2〉〉2R)
1/2
/
√
(number of samples) (5.1)

with the number of samples being 2000 in our case. We give only the error bars for the
case ofκ = 100 andκ = 0.1 otherwise the figure would become too messy. The error bars
increase with increasingκ. Also, in table 2 we give the value of〈〈x2〉〉R for the first and
second 1000 samples forκ = 0.2, 0.3, and 1.0. We found that all the values of〈〈x2〉〉R are
within the error bars for those values ofκ which is very reasonable.

What is the signature of this effect in the simulations? In order to see this effect
we measured the sample-to-sample fluctuations of〈x2〉. This is a direct measure for the
glassiness of the system. In figure 5 we depict the sample-to-sample fluctuation of〈x2〉
and observe that for small enoughκ the function becomes flat with decreasing temperature
which signals the fact that quantum effects wipe out the glassy behaviour. This figure is to
be compared with the figure 2 obtained from the variational approximation.
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Figure 5. Plot of sample-to-sample fluctuations of〈x2〉 for long-ranged correlated disorder from
Monte Carlo simulations. Data points are forκ = 100 (circles),κ = 1.0 (squares),κ = 0.3
(diamonds),κ = 0.2 (up triangles), andκ = 0.1 (down triangles). Each point is averaged over
2000 samples.

Figure 6. Plot of 〈〈x2〉〉R versusT/Tc(∞) for short-ranged correlated disorder. Full curves
are numerical solutions, obtained in I, assuming replica symmetry. From top to bottom:
κ = 1, 2, 3, 6, 100. Data points are Monte Carlo simulations forκ = 100 (circles),κ = 6
(squares),κ = 3 (diamonds),κ = 2 (up triangles),κ = 1 (down triangles). Each point is
averaged over 2000 samples. Error bars indicate the statistical errors for the cases ofκ = 100
(dotted bar) andκ = 1 (full bar).

We also have to notice that the large sample-to-sample fluctuation of〈x2〉 in the low-
temperature regime also indicates that the error bars on our graphs for〈x2〉 are relatively
large in the glassy phase. In fact the uncertainty of our calculation from only 2000 samples is
not enough to make a highly precise quantitative description of the behaviour of this system.
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Figure 7. Plot of sample-to-sample fluctuations of〈x2〉 for short-ranged correlated disorder
from Monte Carlo simulations. Data points are forκ = 100 (circles),κ = 6 (squares),κ = 3
(diamonds),κ = 2 (up triangles),κ = 1 (down triangles). Each point is averaged over 2000
samples.

Nevertheless, for a qualitative study of this system at a low temperature our simulation gives
a clear picture.

Similar results were obtained for the case of short-ranged correlated potential. In figure 6
we display the PIMC results for the mean square displacement together with the results
obtained in I from the analytical calculation for the RS solution. The analytical solution has
been obtained for power correlations withγ = 3

2, but from the variational approximation
any faster falling correlation should give similar results.

In figure 7 we show the sample-to-sample fluctuations of〈x2〉 for the short-ranged case,
as obtained from the QMC simulations to be compared with figure 3 obtained the analytical
variational calculation. Again we observe the reduction of the glassiness of the system with
an increase of the quantum effects.

To conclude, we observe the relatively good agreement between the QMC simulation
and the results of the variational calculation. Some of the deviations are, of course, due
to the variational approximation, but they are also due to the fact that in the simulation
we averaged only over 2000 realizations. The results show that the sample-to-sample
fluctuations of the mean square deviation of the particle from the origin are a good measure
of the glassiness of the system which decreases with increasing quantum effects (increase
of h̄2/m). Thus, the qualitative similarity with the phase diagram of the quantum spin glass
in a transverse field is established.
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Appendix

For the temperature range where the RS solution is valid, it has been shown in appendix B
of I how to obtain the numerical solution of the self-consistent equations (4.15) and (4.16)
of I. When replica symmetry is broken, in the case of long-ranged correlated potential, the
equations for the self-energy matrix are given in equations (5.3)–(5.8) of I. The solution of
equation (5.6) of I is obtained analytically there, and is presented in equations (5.9)–(5.11)
which are reproduced below.

The off-diagonal elements parametrized by the Parisi variablez are given by:

s̃(z) =


3
2Az

2
1 0< z < z1

3
2Az

2 z1 < z < z2

3
2Az

2
2 z2 < z < 1

with

A = ( 2
3)

3g2β3 (A1)

z1 = 3
2g
−2/3µ1/3β−1 (A2)

andz2 is the solution of the equation
1
2βAaRz

4
2 + z2− 3

4 = 0 (A3)

where

aR(β,m,µ, g) = a0+ b0(β, κ, µ, g) (A4)

with

b0(β, κ, µ, g) = 2

β

∑
ω 6=0

1

mω2+ µ− s̃d (ω) . (A5)

We integratẽs over z to obtain
∫ 1

0 dz s̃(z) and substitute it into equation (5.7) of I:

s̃d (ω) =
∫ 1

0
dz s̃(z)− 2

h̄

∫ U

0
dζ (1− eiωζ )f ′

(
2

β

∑
ω′ 6=0

1− e−iω′ζ

mω′2+ µ− s̃d (ω′)
)
. (A6)

Then we have a set of nonlinear equations fors̃d (ω)’s which are solved for up to 20
non-zero Matsubara frequencies (l = −10. . .10, in equation (3.4)). The solution is then
used (utilizing equation (5.4) of I) to calculate the sample-to-sample fluctuation of〈x2〉 as
given in equation (3.10), and is depicted in figure 2.

For the case of short-ranged correlations, we seek a solution with one-step replica
symmetry breaking, i.e.

s̃(z) =
{
s0 0< z < zc

s1 zc < z < 1

and hence

[s̃](z) = zs̃(z)−
∫ z

0
dz s̃(z). (A7)

is given by

[s̃](z) =
{

0 0< z < zc

6 zc < z < 1
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where6 = zc(s1 − s0). The breaking point and the order parameterss0, s1 are found
from maximizing the variational free energy. The equations are similar to the classical case
[15], the difference between the classical and the quantum case enters again through the
renormalization of the constanta0→ aR = a0+ b0 which enters the correlation function of
the random potential.

We thus obtain a set of self-consistent equations for thes̃d (ω)’s and alsos̃(z) (or
s0 and s1) at the same time and the Newton–Raphson method can be applied. When
replica symmetry is not broken we simply obtainuc = 1. The solution is then used
(utilizing equation (5.4) of I) to calculate the sample-to-sample fluctuation of〈x2〉 as given
in equation (3.10), and is depicted in figure 3.
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